1. Show that the set of irrational numbers is not a countable union of closed subsets of \mathbb{R} . Hint: Use Baire's theorem Theorem(Baire):If (X, d) is a complete metric space and $X = \bigcup_{n=1}^{\infty} A_n$, then $(\overline{A_n})^{\circ} \neq \emptyset$ for some *n*. (Ref: A Problem Book in Real Analysis- Aksoy, Khamsi-Page 204)

- a) Show that a set is F_{σ} if and only if its complement is a G_{δ} .
- b) Consider a real-valued function $f: X \to \mathbb{R}$. The oscillation $\omega_f(x)$ of f at the point x is the non-negative extended real number defined by

$$\omega_f(x) = \inf_{V \in \mathfrak{N}_x} \{ \sup_{z,y \in V} |f(z) - f(y)| \}.$$

Where \mathfrak{N}_x denotes the collection of all neighborhoods of the point x. Show that f is continuous at x if and only if $\omega_f(x) = 0$.

c) Let D denotes the set of all discontinuity of f, i.e., $D = \bigcup_{n=1}^{\infty} D_n$ where

 $D_n = \{x \in X : \omega_f(x) \ge \frac{1}{n}\}$. Show that the set D of all points of discontinuity of f is an F_{σ} -set. In particular, the set of points of continuity of f is a G_{δ} -set.

3. Let ϕ be continuous on \mathbb{R} and let f be finite a.e. in $E \subset \mathbb{R}^d$, so that in particular $\phi \circ f$ defined a.e. in E.

- (a) Show that $\phi(f)$ is measurable if f is.
- (b) Show that $|f|, |f|^p (p > 0), e^{cf}$ are measurable if f is.
- (c) Give an example of a function f which is not measurable but |f| is measurable.

4. Let A be a dense subset of \mathbb{R} . Show that f is measurable if $\{x : f(x) > a\}$ is a measurable set for all $a \in A$.

- 5. Let $f: [0,1] \to [0,1]$ be the Cantor function and let g(x) = f(x) + x. Show that
 - a) g is a bijection from [0, 1] to [0, 2] and that $h = g^{-1}$ continuous from [0, 2] to [0, 1].
 - b) m(g(C)) = 1 where C is the Cantor set.
 - c) Use Problem 5 in HW 2 to deduce that g(C) contains a nonmeasurable set A. Let $B = g^{-1}(A)$ Show that B is measurable (or Lebesgue measurable) but not Borel.
 - d) Show that there exists a Lebesgue measurable function F and a continuous function G on \mathbb{R} such that $F \circ G$ is not Lebesgue measurable.

Note: Let
$$C = \{x : x = \sum_{j=1}^{\infty} \frac{a_j}{3^j} a_j = 0, 2 \text{ for all } j\}$$
. Let $f(x) = \sum_{j=1}^{\infty} \frac{b_j}{2^j}$ where $b_j = \frac{a_j}{2}$.

The series defining f(x) is the base 2 expansion of a number in [0, 1], and any number in [0, 1] can be obtained in this way. Hence f maps C onto [0, 1]. Note that if $x, y \in C$ and x < y then f(x) < f(y) unless x and y are the end points of one of the intervals removed from [0, 1] to obtain C. In this case $f(x) = \frac{p}{2^k}$ for some integers p, k, and f(x) and f(y) are two base-2 expansions of this number. Extend f from [0, 1] to itself by declaring it to be constant on each interval missing from C. This extended f is still increasing, and since its range is all of [0, 1] it cannot have any jump discontinuities; hence it is continuous. f is called the **Cantor function** or Cantor-Lebesgue function.

6. Show that

- a) The sum and product of two simple functions are simple.
- b) $\chi_{A\cap B} = \chi_A \cdot \chi_B$
- c) $\chi_{A\cup B} = \chi_A + \chi_B \chi_{A\cap B}$
- d) $\chi_{A^c} = 1 \chi_A$